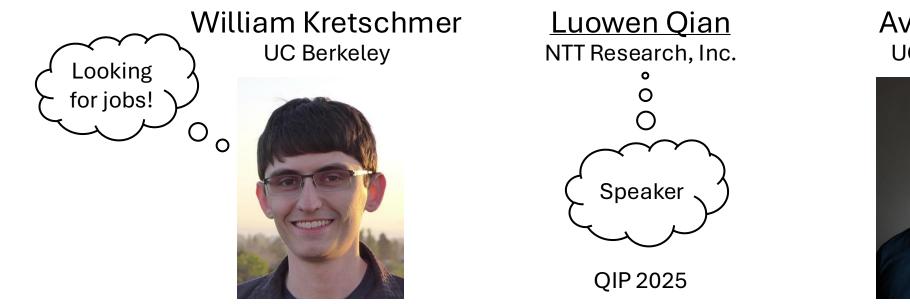
Quantum-Computable One-Way Functions without One-Way Functions



Avishay Tal UC Berkeley

(Post-Quantum) One-Way Functions (OWFs)

$$f \colon \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$$

- Easy to compute for P (deterministic efficient classical algorithms)
- Hard to invert for BQP (efficient quantum algorithms)

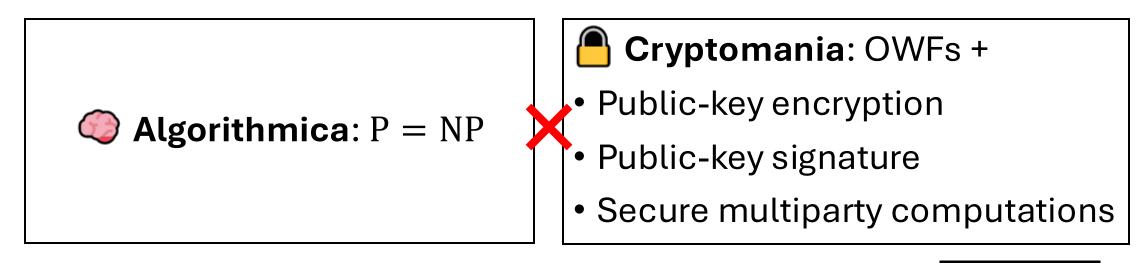
Quantum-Computable OWF (qOWF)

$$f: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$$

- Easy to compute for BQP (pseudo-deterministic efficient quantum algorithms)
- Hard to invert for BQP

Compute f(x) correctly with probability $1 - \varepsilon$ in time poly $(\lambda, \log 1/\varepsilon)$

Cryptography today (Impagliazzo'95] [Impagliazzo'95]



Fact: \bigcirc Algorithmica \Rightarrow none of \bigcirc Cryptomania; attack is black-box

Resolution of "P $\stackrel{?}{=}$ NP" is worth \geq \$10⁶ (Clay), realistically \$10¹⁰~10¹² $\stackrel{<}{\bullet}$ $\stackrel{<}{\bullet}$ $\stackrel{<}{\bullet}$ $\stackrel{<}{\bullet}$ (OpenAl o3-mini) "Cryptographers seldom sleep well." –Silvio Micali

Quantum information helps cryptography

- Bennett-Brassard'84: QKD with unbounded security
- K'21: Relative to a quantum oracle, ∃pseudorandom unitaries yet BQP = QMA (quantum analogue of P = NP)
 - No quantum-sensitive black-box attack of "BQP = QMA \Rightarrow no quantum cryptography"
- K-Q-Sinha-T'23: Relative to a classical oracle, \exists weak pseudorandom states yet P = NP
 - No black-box attack of " $P = NP \Rightarrow$ no quantum cryptography"
- Lombardi-Ma-Wright'24: Relative to a classical oracle, ∃weak pseudorandom states secure against adversaries with non-adaptive-query access to arbitrarily powerful classical oracles
 - Quantum cryptography potentially evades all traditional complexity hardness?

Which quantum cryptography, so far?

0

 \bigcirc

[Ananth-Q-Yuen'22, Morimae-Yamakawa'22, ...]

NP-resilient quantum cryptography:

- (Statistical) QKD
- Private-key encryption
- Secure multiparty computations

Cryptomania:

- Public-key encryption
- Public-key signature
- Secure multiparty computations

Classical communication? (can broadcast bits; not qubits)

Only quantumsensitive separation Our contribution

"Cryptomania"

Relative to a classical oracle,

- **∃Quantum-computable cryptography:**
 - Public-key encryption with semantic security
 - Public-key signatures with existential unforgeable security
 - Oblivious transfer and MPC with simulation security

(without quantum communication/long-term quantum memory)

• P = NP

Quantum-sensitive or not, there is no black-box attack of " $P = NP \Rightarrow$ no quantum-computable cryptography"

Today: Baby case of main theorem

Relative to a classical oracle,

- 3Quantum-computable one-way functions (OWFs)
 - Still sufficient for constructing public-key signatures [Song'14]
- P = NP (thus $\nexists OWFs$)

Quantum-Computable One-Way Functions without One-Way Functions

Tool: Forrelation

Boracle distributions $A \sim$ (Forrelated, Uniform) such that

• Distinguishing is easy for BQP^A [Aaronson'09]

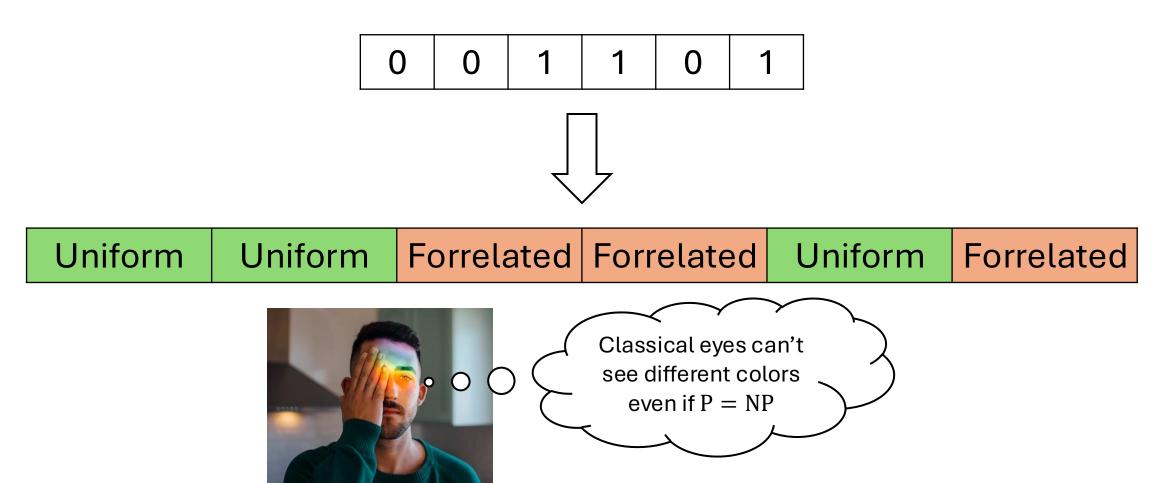
• Computationally indistinguishable even against $PH^A = NP^{NP^{NP^{...}A}}$ [Raz-T'18]

 \succ Classically indistinguishable even if P = NP

Key idea: oracle encryption

[Aaronson-Ingram-K'22]

Use Forrelation as a "quantum-exclusive" encryption



Oracle construction

Random oracle $R: \{0, 1\}^* \rightarrow \{0, 1\}$

 \succ R(k, x) is a pseudorandom function (PRF) for k, x ∈ {0, 1}^λ \succ ⇒ ∃0WF^R

Encode/encrypt R with Forrelation: Forr[R]

> R is now only accessible by quantum computers

Our oracle (informal): PH^{Forr[R]}

✓ Collapses P = NP

> Is *R* still a quantum-secure PRF? (See paper for technical details)

Concrete candidate assumptions?

- Possible approach: heuristically instantiate *Forr*[*R*]
 - ISSUE: Forrelated distribution is not known to be efficient
- Hope our new separation also inspires future research
- Fortunately (?), NP is efficient ⇒ we can efficiently find (or rule out) provably secure quantum cryptography instantiations too! (Algorithmica strikes again)

Consider NP statement: $\exists C, \Pi$ s.t. Π proves that instantiation C is (in)secure

