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Root of classical crypto: one-way functions

* Functions that are easy to compute but hard to invert

* Sufficient for: a lot of crypto (secret-key encryption, signature, commitment,
ZK, (weak) coin flipping, pseudorandomness...)

* Necessary for: almost all crypto! (encryption, signature, commitment, key
exchange, MPC, pseudorandomness...)

* Holy grail for theory of crypto: minimize assumptions




One-way functions in a guantum wo

* Functions that are easy to compute but hard to invert

ld

Post-quantum crypto:
Crypto against
quantum adversaries

* Sufficient for: a lot of crypto (secret-key encryption, signature, commitment,

ZK, (weak) coin flipping, pseudorandomness...)

* Necessary for: almost all crypto! (encryption, signature, commitment, key

exchange, MPC, pseudorandomness...)

* Holy grail for theory of crypto: minimize assumptions




Power of quantum for crypto

O
o

e Key exchange unconditionally, aka quantum key distribution
[Bennett, Brassard’84]

e MPC from OWF [Bennett, Brassard, Crépeau, Skubiszewska’91; Bartusek, Coladangelo,
Khurana, Ma’21; Grilo, Lin, Song, Vaikuntanathan’21]

* “Impossible” crypto: unclonable crypto, position verification,
everlasting security... [Wiesner’83; Kent’02; Unruh’12; ...]

* (Crypto of quantum tasks: quantum encryption/authentication/MPC,
guantum delegation, ZK for QMA...)



One-way functions in a guantum world

Quantum crypto: Crypto with quantum parties

* Necessary for: almost all crypto! (encryption, signature, commitment, key

exchange, MPC, pseudorandomness...) °s
O

* Holy grail for theory of crypto: minimize assumptions

What are the minimal assumptions for quantum crypto?




Classical vs Quantum Pseudorandomness

One-Way Function [Ji, Liu, Song’19]
* Pseudorandom Generator (PRG) || Pseudorandom States (PRS)
» G({0,13*) € {0, 1}" 519> * G({0,1}*) - n qubits
« Random {0,1}",n > 1 e Haar random pure state

* Pseudorandom Functions (PRF) rotochmer’20:
. f{o, o {0, 1}d - {0,1}" Might be hard

 Random F: 0,13 - {0,1}" | o itari
(qaunerzfgccess) 10,1} 0,1} ) o_-__Pseudorandom Unitaries (PRU)

N U{o, 1)A: @ unitary

e Pseudorandom Permutations .
 Haar random unitary
(PRP) (query access)




Quantum states and Haar random states

e Qubit (quantum bit) [): unit vector in C?
* n qubits |Y): unit vector in (C2)®" = 2"

* Haar random states:
. . . n By

the uniform distribution u over unit sphere of C* = R?%*?
(Requires exp(n) bits to describe an approximation)

* Unitary invariance: VU: U - Haar = Haar

11)



Pseudorandom States (PRS) [jLs19]

A quantum algorithm G is an n-qubit PRS generator if:

* Efficient generation
e Takes as input k € {0,1}4
* Runs in poly(4) time
 Outputs a pure state | (Y, | of n(A) qubits

No cloning
* Pseudorandomness: %/—]

* |[Y,) “looks” Haar random even with many copies, i.e.
* Vpoly t(-) VQPT, 4,

e [A(0® @) = 1] = e [A(19)2®) = 1]| < negl2)
<Haary,y)

N
Similar to t-designs
but does not fixt




OWEF vs PRS

* JLS19: OWF — w(log A)-qubit PRS
— (private-key query-secure) quantum money

* Kretschmer’20: In a relativized world, BQP = QMA but PRS exists
(PRS does not imply OWF in a black-box way)

* PRS could be a weaker (quantum) assumption!

What classical crypto task can we achieve just with PRS?




Difficulties of using PRS

(will expand more later)
e Qutput is highly entangled [jLs19]

* We do not know: [Brakerski, Shmueli’20]
n-qubit PRS — n’-qubit PRS for any nontrivial n # n’

* Even shrinking naively causes the state to be mixed

* Output might not be expandingn < A

Our solution: state analogue of PRF




Pseudorandom Function-like States (PRFS)

A guantum algorithm G is a PRFS generator if: O

* Efficient generation
« Takes as input k € {0,1}*,x € {0,1}¢
* Runs in poly(4) time

As useful as PRF
(SKE, MAC, ...)

* Outputs a state |l/)k,x> of n qubits

e Pseudorandomness
* Vpoly t,Vpoly # of (distinct) indices x; . (known to distinguisher),

(l¢k,x1> |1/Jk,xs))®t for random k is computationally indistinguishable from
(ldy) - | )BE for n-qubit Haar random states {|¢; )}



Our results

Using PRFS as an intermediate step, we show

1. One-time encryption of messages of any length exists
assuming w(log 1)-qubit PRS

2. Statistically binding commitments exists
assuming 2log A + w(loglog A)-qubit PRS
(Corollary: MPC via [BCKM21])

[Morimae, Yamakawa’21]: commitments and one-time signatures
assuming cA-qubit PRS forc > 1



Encryption

From w(log A)-qubit PRS




One-Time Pad

k| = |m]
O &

@)

)




Pseudo OTP from PRG

G: {0, 1}kl - {0, 1}™l is a PRG

c=m® G(k) m=c® G(k)
OOO OOO
@ O
®
°0
c looks
random

If PRS is like PRG, can we extend this for PRS?




Naive Pseudo OTP from PRS

Issue: PRS output might
not be longer than |k|
O §

By unitary-invariance,
|c) looks Haar random



One-time encryption of a single bit

Project onto
Vi
O

o ° . - 1
O O Correct with probability 1 — on

Bitm — w >|c) > kw—> m (needsn = w(logl))

Either way,
|c) looks Haar random

How to encrypt many bits?




Encrypting many bits via repetition

my: [Py) or p
: Project for
me: |Yy) or every state
O

NO

fbitsm—*ﬁ? kwém

! ..o
Sees the patterns
using SWAP tests




One-time encryption of many bits

Project for
o every state
o© ooO
O O
fbitsm—*ﬁ? >|c)— kﬂ—»m

® <o

Only need to construct PRFS with input domain 2¢ > ¢

|c) should look like
Haar random states?




Construct PRFS from PRS?



PRFS via GGM [Goldreich, Goldwasser, Micali’84]

Mixed state
(not deterministic)

Sdd

-
Wﬁ
wn




PRFS via splitting key

* Split key k = kq||k5|| -+ ||k, and invoke PRS on k;
ﬁ s
l
\ PRS /

* Only gives encryption of £ bits



PRFS via splitting Haar: post-selection

l
l

* Given |y} ), measure the first d qubits and conditioned on getting x,
output the post-measurement state on the n — d qubits

* Post-selection success probability for Haar is exponentially
1 . L
concentrated around vl post-selection is efficient if d = O(log 1)



Recap: from PRS to one-time encryption

Putting things together: to encrypt message of length £ = 101
n-qubit PRS with n = w(log A1)-qubit output

— PRFS with log £ = O(log A)-bit input domain
and n — log ¥ = w(log A)-qubit output

— £-bit encryption



Commitment

From w(log A)-qubit PRS




Bit commitment

Hiding:
Hides b against
malicious receiver

v

:
v

v

Binding: Opens to
the same b against
malicious committer



Naor commitment from PRG [Naor’91]

(: is a PRG mapping A bits to 34 bits

@ ﬁ
k< {0,1} < > s « {0,133
G(k)+b-s
* Hiding: G(k) + b - s looks random
as G (k) looks random
k

* Binding: b is uniquely determined
with high probability over s




Naor commitment from PRS

(: is a PRS mapping A bits to 34 qubits

* ﬁ
k « {O, 1}1 < P
PPly) .
k

v

P « {0, 1}%% (interpret as a Pauli)

Only need the
distribution to be
Pauli invariant

5O

e Hiding: P? |y, ) looks Haar random
as Haar random is unitary invariant

MY21: can be made non-interactive generically

Pauli invariant distributions:

* Haar random states (special case of unitary-invariant)
e A string of Haar random qubits

* A string of Haar random states — PRFS




Naor commitment from PRFS

G is a PRES with 2% - n > 72

® o
k < {0,1}* < P P « {0,1}7% (interpret as a Pauli)

PP ([¥r1) [y p0))

> * Hiding: commitment looks like
2% many Haar random states

e Binding: b is “uniquely determined”
with high probability over P



Recap: from PRS to MPC

Putting things together:
n-qubit PRS with n = w(log 1)-qubit output

— PRFS with log A-bit input domain
and n — log A = w(log A)-qubit output
(2%(n —log 1) = w(2))

— Quantum analogue of Naor commitment
— Malicious MPC [Bckm21]



Subtleties

G is a PRES with 2% - n > 72

® o
k < {0,1}* < P P « {0,1}7% (interpret as a Pauli)

PP ([¥r1) [y p0))

;OOO

Committoa
superposition?

How to efficiently
test whether the
state is correct?

(also for encryption)



Generalizing statistical binding for
guantum bit commitments

Formalize b
having been
determined?

Prior work on defining statistical binding —
e Sum blndlng [Yan, Weng, Lin, Quan’15; Unruh’16; Fang, Unruh, Yan, Zhou’20; MY21]
Pr[open 0] + Pr[open 1] < 1 + negl
* “Classical” binding: receiver’s measurement outcomes
statistically determine the bit [itansky, Brakerski’21; Bckm21]

III




Generalizing statistical binding for
guantum bit commitments

LA N
2 -

Allow committing to
superposition, otherwise
classical binding

(laux), b)rear = (laux),b)igeas Ab = b’

Stat. indistinguishable
from classical binding



Testing PRS/PRFS: challenges

* SWAP test only gives inverse polynomial guarantee
(we want negligible security)

* Our PRFS (post-selection) construction does not satisfy
standard state generation guarantee

* runs in expected poly-time
(or strict poly-time with inverse exponential failure probability)

* produces garbage auxiliary (also applies to [BS20])
(auxiliary cannot be generically uncomputed when output is quantum)



Testing PRS/PRFS: solution

We show how to test PRS/PRFS without state generation guarantee

(output can even be a mixed state)
See paper
for analysis
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Open guestions

Quantum cryptography from quantum computational assumptions!
* Candidate PRS/PRU without OWF? (Random quantum circuit?)

* Construct crypto from PRS with even smaller output length?
(Construct statistical PRS with larger output length?)

* What other interesting quantum hardness lies beyond PRS?

Thank youl!
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