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Why unconditional security?

(according to cryptographers @ MIT)

“Cryptographers seldom sleep
well.” —Silvio Micali

“Their careers are frequently
based on very precise complexity-
theoretic assumptions, which
could be shattered the next
morning.” —Joe Kilian (1988)

Unconditional security is
cryptographers’ ultimate dream!



What is unconditional security?

* Conditional security: depends on mathematical assumptions

* Unconditional security: proof without mathematical assumptions

Related concepts concerning modeling attackers:

» Information-theoretic (statistical) security: o against attackers that
can perform arbitrary computations (can even solve halting)

» Computational security (standard): ¥ against attackers with a

polynomial amount of computational resources
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One-time pad
is an unconditional
statistically secure
encryption scheme

Image: Crypto Museum and InfoWorld
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Diffie-Hellman (as-is)
is a conditional
computationally secure
key-exchange scheme
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Diffie-Hellman with a
hypothetical proof
would be an unconditional
computationally secure
key-exchange scheme


https://www.cryptomuseum.com/crypto/otp/index.htm
https://www.infoworld.com/article/3647751/understand-diffie-hellman-key-exchange.html

Classical cryptography feasibility matrix
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*Because of this diagonal matrix, for all practical purposes
unconditional security = statistical security (classically)




Quantum cryptography feasibility matrix

Still too strong!
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Can we get unconditional computationally
secure quantum cryptography?

spoilers: yes*




Bit commitment
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Why (quantum) commitments? \i.

1. Central: existential equivalence to many other tasks

»Other quantum cryptography: oblivious transfer (OT),
secure multiparty computation (MPC), zero knowledge (ZK)...

»Hardness of quantum information tasks: compression, channel decoding,
entanglement distillation, black hole radiation decoding...

2. “Easiest”: constructible from almost any computational cryptography
» Post-quantum one-way functions
»Quantum pseudorandomness, quantum encryptions, quantum money...



Pursuit of unconditional commitments

* Conceptualized circa ‘81, formalized in Brassard-Chaum-Crepeau’88
* Classical commitments require OWFs, thus P #= NP

Image: Quantum Technologies

e Statistical quantum commitment proposals and attacks >

e Statistical qguantum commitment impossibility

e Statistical relativistic commitments
* Statistical quantum relativistic OT/MPC still impossible \

Brian


https://www.unige.ch/gap/qic/qtech/news/24-hours-relativistic-bit-commitment

Quantum commitments

* Quantum commitments from new quantum assumptions

s*Unclear how these compare to OWFs

e Separation of qguantum commitments from P #= NP and more

‘*Underlying assumptions are either “contrived” or not concrete

guantum
commitment could still be unconditional?




Auxiliary-input (non-uniform) cryptography

Adversaries also
non-uniform:
arbitrary

(Inefficient)
preprocessing

(“P = NP” barrier still applies)



Quantum auxiliary-input cryptography

Adversaries also
non-uniform:
arbitrary

(Inefficient)
preprocessing




Main theorem

Unconditionally, there exists a quantum auxiliary-input commitment
scheme with inverse exponential security error that is:

e Statistically binding against (unbounded) committer
hiding against exponential-size receiver

*Non-interactive
(one-message commit phase + one-message reveal phase)

“*Preparing |aux) takes at most uniform doubly-exponential time
(can be further applied for MPC: secure multiparty computations)

*concurrent with Morimae-Nehoran-Yamakawa



Exponential-time preprocessing

means it is practically irrelevant,
right?

Well, you could pick a
smaller security parameter...
(487 so that preprocessing
time is at most 2 years)




Image: Cronokirby

Application: high-stakes MPC Bf

* Preprocessing phase: All parties run in exponential time ty _
(independent of their inputs) c wﬁ %
= Adversaries are unbounded %ﬁ i- <—\X

Xo
* Online phase: (after obtaining inputs) enforce all parties to be \L
polynomial time by enforcing a reasonable time limit Y
= Adversaries also must be efficient

s After protocol concludes, one party may be able to recover
others’ private inputs if they spend exponential time
(inherent limit of )
»Use a commitment combiner with another post-quantum scheme
with a larger security parameter (say 512 bits instead of 48)
» “Certified everlasting transfer” secrets to a trusted referee


https://cronokirby.com/posts/2022/05/explaining-yaos-garbled-circuits/

Roadmap

v'"Main theorem
 Construction with trusted |aux)
* Variation 1: prepare |aux) with efficient (stateful) trusted setup

* Variation 2: prepare |aux) with exponential communication

* Improved classical impossibility
e Future directions & conclusions



EFl pairs (of quantum states)

[Brakerski-Canetti-Q’23]

* Efficient generation: 6(1’1, b) is an efficient
guantum algorithm sampling an arbitrary
mixed state (distribution over pure states)

e Statistical Farness: 6(1’1, O) VS G(ll, 1) are
inefficiently distinguishable

* Computational Indistinguishability:
G(l)‘, O) ~ . G(l’l, 1) are indistinguishable
against any quantum polynomial-time
algorithms



Stinespring’s dilation theorem (1955)

* Every classical deterministic computation can be written
in a “reversible form”:
add auxiliary wires, apply reversible gates, remove auxiliary wires

* Every quantum computation can be written in a “unitary form”:
add auxiliary registers, apply unitary gates, remove auxiliary registers
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EFI circuit in unitary form

How does a guantum unitary circuit generate randomness?
Randomness is caused by ignorance to purifications
* With access to purifications, the overall state is pure (deterministic)

0) — y Fact: “SWAP test” algorithm
0 — - Loutput c]fan efficiintly test equality
of two unknown pure states
0) —  GI*Mb)  —. BULE
0) — — 0) {H}——{HHFF
» purifications
0) — | D) X
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Quantum commitments from EFI pairs

Canonical form commitment

b €{0,1} ﬁ hiding
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laux) commitment from EFI pairs
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Unconditional =Fl pairs?

Q: Unconditional =FI pairs of classical Distributions?

A:  An expanding random function H: [N] — [N3] is an inefficient
classical pseudorandom generator [Goldreich-Krawczyk'92]

» Fix a distinguisher circuit

»Exponential concentration exp(—N) via Chernoff’s bound Non-uniform

» Apply union bound over all exp(N) exponential-size circuits quantum
N adversaries can

run multiple
Generalizes to quantum circuits without quantum advice circuits in

superposition

= A random function is pseudorandom with high probability




Post-quantum sparse pseudorandomness

H:[N] - [N3]is an inefficient pseudorandom generator against
guantum non-uniform circuits (with quantum advice)?

1. Invoke non-uniform QROM security [Chung-Guo-Liu-Q’'20, Liu’23]

 Random functions are pseudorandom against quantum advice
even if they could query the random function oracle during execution phase

* Underlying proof is general and more algorithmic:
multi-instance interactive game, compressed oracle, quantum rewinding
2. A more GK-ster algebraic proof [Ma (private communication)]
* Same idea as GK but use a matrix Chernoff’s bound for spectral norm

* Less general but slightly tighter security: \/S/N instead of 3/S/N
(matches GK classical bound: sqrt loss from Hoeffding’s bound)



Putting pieces together

Fix a good function H (lexicographically smallest):V
P(0) Yoeero il H(X))o ® |x)p (44 qubits in total)
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Instantiating quantum auxiliary input

* Variation 1: prepare |aux) with efficient (stateful) trusted setup
* Need to prepare: |l/)(0)> X er{o 1};L|H(x))o & |x)p for a random function H

* |If H is a random oracle, this can be prepared efficiently with 1 quantum query
»Use Zhandry’s compressed oracle to statefully simulate a random function
» Statistically hiding if # of copies prepared is polynomial
* Variation 2: prepare |aux) with exponential communication
» Naive approach: ask one party to prepare copies of |l/)(0)> for both

Efficiently broken! (using compressed oracles again)
» A step back: jointly pick a random function H and prepare |l/)(0)> separately



Jointly picking H

Issue: How do parties agree on the
random function H without trusting

each other?
Solution: ask the committer to pick H

»Computational hiding against receiver
if committer is honest

» Statistical binding against committer
if H is expanding




Reflection

* Classical cryptography stops at inefficient pseudorandomness
(not cryptographically useful)

* Quantum cryptography can further achieve commitments with
preprocessing through purification and SWAP tests

Paradoxically, guantum auxiliary input (or advice)
helps cryptographers more than adversaries

Can advice be useful?
(Raz’05: QIP/qpoly = IP/rpoly = ALL)



Randomized auxiliary-input cryptography

Adversaries also
non-uniform:

Public randomized
advice can be arbitrary
derandomized through preprocessin/g

Kaveragingargument/ / \ Q )

Example (Naor non-interactive commitment):
S, = Sg = a good receiver’s “first message”




Impossibility of randomized commitments

Independent
distribution

Classical samples
cannot be verified

With high probability,

* If 0 was committed, by
completeness:

dr: Accept (c, T, Slgi), O)

* If 1 was committed, by
statistical binding:

Vr: =Accept (c, T, Sg), O)
Therefore, an NP algorithm

can efficiently break hiding
with just a few samples



Conclusions

* Quantum computational advantage through
cryptography if P = NP

* First demonstration of useful cryptography
with unconditional inherently-computational
security

e Reassess the necessity of computational
assumptions and the existence of barriers

for qguantum cryptography

Thank you! Questions?



https://en.wikipedia.org/wiki/Is_the_glass_half_empty_or_half_full%3F

