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Root of classical crypto: one-way functions

• OWFs: functions that are easy to compute but hard to invert

• Sufficient for: a lot of cryptography (secret-key encryption, signature, 
commitment, ZK, (weak) coin flipping, pseudorandomness…)

• Necessary for: almost all cryptography that is information-
theoretically impossible! (encryption, signature, commitment, key exchange, 
MPC, pseudorandomness…)

• Holy grail for theory of crypto: minimize assumptions



Landscape of classical cryptography

In terms of Impagliazzo’s five worlds (1995)…

“Minicrypt”
One-way functions

PRG, PRF,
secret-key encryption, 

identification, commitment,
zero knowledge, coin flipping…

Not “Algorithmica”
P ≠ NP

“Cryptomania”
public-key encryption,

key exchange, multiparty 
secure computation…

⇐ ⇐

OWFs seem 
insufficient



Quantum changes landscape dramatically

• Information theoretically secure key exchange [Bennett, Brassard’84]

• MPC from OWFs
[Crépeau, Kilian’88; …; Bartusek, Coladangelo, Khurana, Ma’21; Grilo, Lin, Song, Vaikuntanathan’21]

• MPC without OWFs [Kretschmer’21; Ananth, Q, Yuen’22; Morimae, Yamakawa’22]

• “Quantum pseudorandomness” (PRS) suffices for MPC, signature…

• It does not appear to imply OWFs (more on this later)

Is there still a minimal assumption for (computational)
quantum cryptography?



EFID pairs: non-trivial computational indistinguishability

• Efficient generation: 𝐺 1𝜆, 𝑏 is an efficient 
randomized algorithm sampling from 
certain Distributions over bit strings

• Statistical Farness:
𝐺 1𝜆, 0 vs 𝐺 1𝜆, 1 are statistically far
(in total variation distance)

• Computational Indistinguishability: 
𝐺 1𝜆, 0 ≈𝑐 𝐺 1𝜆, 1

EFID pairs ⇔ OWFs [Goldreich’90]

𝐺 1𝜆, 0

𝐺 1𝜆, 1

[Goldreich’90]



EFI pairs (of quantum states)

• Efficient generation: 𝐺 1𝜆, 𝑏 is an efficient 
quantum algorithm outputting an arbitrary 
mixed state (distribution over pure states)

• Statistical Farness:
𝐺 1𝜆, 0 vs 𝐺 1𝜆, 1 are statistically far
(in trace distance)

• Computational Indistinguishability: 
𝐺 1𝜆, 0 ≈𝑐 𝐺 1𝜆, 1

[Yan’22] also informally considered EFI in context of commitments

𝐺 1𝜆, 0

𝐺 1𝜆, 1



What is so different about EFI vs EFID?

• EFID ⇔ OWFs, but EFI pairs do not imply OWFs as PRS ⇒ EFI
(many classical equivalences crucially go through OWFs)

• Randomized algorithms take random coins as input, but quantum 
algorithms generate randomness from entanglement

• Many classical techniques do not carry over:
• Cannot assume deterministic

• Cannot program randomness

• Quantum techniques needed for approaching EFI



Minimality of EFI in a quantum world

EFI

*These implications are a combination of results in multiple works including ours. Details to come.

Statistical 
commitments, 

OT, MPC,
QCZK = QIP

“Weak” 
commitments, 

OT, MPC,
QCZK

• No statistical security
• “Semi-honest”
• Non-trivial 2PC/QCZK



Additional significances of EFI pairs

Like OWFs, EFI pairs are:

• Simple

• Natural

• Immediately implied by various cryptography like encryptions and PRS

• Serve as a linchpin for demonstrating equivalence



Why should we care?

• Equivalences are great (mathematically)…
• Quantum equivalences more so: they reveal fundamental properties of 

quantum information & quantum computation!

• But what does it mean to cryptographers if quantum-secure one-way 
functions exist after all?
• (As we all believe, hopefully? Are these just abstract nonsense?)

• What are the concrete candidate hardness assumptions that imply EFI pairs, 
and hold even if one-way functions do not exist?

• Answer is complicated, stay tuned until the end of the talk!



Bit commitment

𝑏

𝑏

Hiding:
Hides 𝑏 against 

malicious receiver

Binding: Opens to 
the same 𝑏 against 

malicious committer

Semi-honest security: [Yan22]

commit phase is honest up to purifications
(not measuring and not forgetting)

Commit phase

Reveal phase



Weak to strong commitment via EFI

Roadmap:

• Semi-honest computational commitments ⇒ EFI pairs

• EFI pairs ⇒ statistically binding commitments

• From there, can get:
• Statistically hiding commitments [Yan22]

• Simulatable (equivocal and/or extractable) commitments [BCKM21, AQY22]



Commitment from EFI via purification

“Canonical form” commitment [Chailloux, Kerenidis, Rosgen’11; Yan, Weng, Lin, Quan’15; Yan’22]

• Run purified generation 𝐺′ 𝑏 000⋯0 → 𝜓𝑏 𝐶𝑅
(𝐶 is output register, 𝑅 is its purification)

• Prove correct generation via uncomputing 𝐺′

𝐺′ 𝑏 0⋯0 𝜓𝑏 𝐶

𝜓𝑏 𝑅 𝐺′−1

Check if get back 
𝑏 0⋯0

• Computational hiding 
⇐ computational 
indistinguishability

• Statistical binding: 
statistical farness + 
Uhlmann’s theorem



EFI from weak commitment: high level idea

• EFI pair is a statistical-computational gap in a distinguishing task
• Exhibit two efficient distributions

• Assert computational indistinguishability

• Break statistical indistinguishability via an attack

• A commitment scheme also inherently has such a gap as information 
theoretical commitments are impossible by Mayers–Lo–Chau (1997)
• A gap in breaking hiding ⇔ a gap in distinguishing

• A gap in breaking binding is less clear

• More convenient to consider (equivalently) oblivious transfer,
where security for both sides are distinguishing tasks



EFI from weak commitment: roadmap

EFI
Semi-honest 

oblivious 
transfer

Semi-honest 
commitment



Oblivious transfer

OT

𝑏0, 𝑏1 𝑐

𝑏𝑐

Semi-honest security:
During protocol execution,
everyone is honest up to purifications

(details to come)



Oblivious transfer (semi-honest receiver)

OT

𝑏0, 𝑏1 𝑐

ViewR

Trivial to recover 𝑏𝑐
Goal: recover 𝑏1−𝑐

Equivalent formulation as distinguishing:
Distinguish ViewR|𝑏1−𝑐 = 0 vs ViewR|𝑏1−𝑐 = 1



Oblivious transfer (semi-honest sender)

OT

𝑏0, 𝑏1 𝑐

ViewS

Goal: recover 𝑐

Equivalent formulation as distinguishing:
Distinguish ViewS|𝑐 = 0 vs Views|𝑐 = 1



EFI from semi-honest oblivious transfer
For every OT, either a semi-honest sender or a semi-honest receiver 
can (inefficiently) break security [Chailloux, Gutoski, Sikora’16]

1. If a semi-honest sender can break it,

• Computational indistinguishability ⇐
Computational semi-honest security against sender

• Statistical farness ⇐ by assumption

2. Similar argument for receiver case

OT

++

𝑐 = 0
ViewS

OT

++

𝑐 = 1
ViewS

vs



Oblivious transfer from commitment

• Well known [CK88; …; Crépeau, Légaré, Salvail’01; Fang, Unruh, Yan, Zhou’20, Yan22]

• Subtlety: computational binding for quantum commitments is harder 
to use
• Solution: Yan’s computational collapse theorem [Yan22]

suffices for semi-honest security

Next: a simple 2-round semi-honest OT



1-round honest oblivious transfer

𝑏0 , 𝐻 𝑏1
If 𝑐 = 0, measure both in computational basis
If 𝑐 = 1, measure both in Hadamard basis
Let outcomes be 𝑏0

′ , 𝑏1
′ ; output 𝑏𝑐

′

Security against honest receiver: 𝑏1−𝑐
′ is independently random

Security against semi-honest receiver?
• A purified measurement on 𝑏1−𝑐

′ can be uncomputed ×
Force measurement via reporting measurement to sender
(tracing out sender’s view will cause the collapse)



2-round semi-honest oblivious transfer

𝑏0 , 𝐻 𝑏1
If 𝑐 = 0, measure both in computational basis
If 𝑐 = 1, measure both in Hadamard basis
Let outcomes be 𝑏0

′ , 𝑏1
′ ; output 𝑏𝑐

′

(𝑏0
′ and 𝑏1

′ reveals some information about 𝑐, so cannot send in clear)
Semi-honest security against sender: hiding of commitment
Semi-honest security against receiver: state collapsed due to binding [Yan22]

Comm(𝑏0
′ )

Comm(𝑏1
′)



Secure multiparty computation

• Sufficient with quantum statistically-binding commitments and thus
EFI pairs [BCKM21, AQY22]

• One-sided statistical security
• Extension to quantum functionalities [Dupius, Nielsen, Salvail’12]

• Extension to reactive functionalities
[Crépeau, van de Graaf, Tapp’95; Ishai, Prabhakaran, Sahai’08]

• EFI pairs are necessary for semi-honest 2PC for non-trivial classical 
functionality
• Classically this implies semi-honest oblivious transfer [Beimel, Malkin, Micali’99]

• Generalizes to quantum “semi-honest”
• Semi-honest oblivious transfer implies EFI pairs



Zero knowledge proofs

• EFI ⇒ QCZK proof for QMA with an efficient prover having
a single copy of witness state
• It is a special case of statistical 2PC for quantum functionalities

[Broadbent, Ji, Song, Watrous’20]

• EFI ⇒ QCZK proof for QIP = PSPACE
• Wrap the IP protocol inside a reactive 2PC functionality, similar to classically 

[Ben-Or, Goldreich, Goldwasser, Håstad, Kilian, Micali, Rogaway’88]

• The functionality simulates the real IP verifier for the verifier

• EFI ⇐ QCZK proof for languages hard-on-average against BQP
• QCZK proof gives an “instance-dependent” EFI (IDEFI) pair

[Watrous’02; Vadhan’06; Ong, Vadhan’08; YWLQ15]

• Average-case hardness + IDEFI pair ⇒ EFI



Summary: minimality of EFI pairs

• We point out that the existence of EFI pairs are robustly equivalent to 
that of commitments, OT, MPC, and QCZK proofs

• EFI pairs seem somewhat minimal as EFI pairs are immediately
implied by encryptions, pseudorandom states and unitaries, etc.

• Open: are EFI pairs necessary for the following?
• Zero knowledge arguments

• Signatures, money, “unforgeable security” in general (harder?)

• Open: any barriers for unconditionally proving the existence of EFI?



Enough of abstract 
nonsense, what are 
possible approaches 

to get EFI pairs 
without OWFs?

and what are the concrete
EFI candidates?



EFI from complexity separations

• This work: If BQP ≠ QCZK, then EFI pairs “exist”

• Chailloux, Kerenidis, Rosgen’11: If QMA ≠ QIP, then EFI pairs “exist”

(reductions are explicit)

Issues:

• Not concrete if the proof is not explicit

• Only get (quantum) auxiliary-input EFI pairs, especially in CKR11

• No evidence for being weaker than OWFs [Aaronson, Ingram, Kretschmer’22]



EFI from QSCDff [Kawachi, Koshiba, Nishimura, Yamakami’12]

• QSCDff: Quantum state computational distinction with fully flipped 
permutations

• Nice properties: trapdoor, worst-case to average-case reduction, 
reduction to graph automorphism

• Issue: no evidence for being weaker than OWFs?



Kretschmer’s template

• Pseudorandom state (PRS) generator [Ji, Liu, Song’19]

Like PRG, but outputs pure states that look “Haar random” even if 
given many copies

• Kretschmer’21: There exists a quantum oracle relative to which,
• BQP = QMA, thus no quantum-secure one-way functions

• Pseudorandom states exist, which implies the existence of EFI pairs

• Issues:
• Quantum oracle separations are weaker than classical [Aaronson’09]

• “Not concrete”: PRS is essentially generated by a Haar random unitary oracle



Candidate PRS from random quantum circuits

• Key describes a “sufficiently” large 2-local random unitary 𝑈𝑘
• Output: 𝑈𝑘 0

𝑛

• Already studied in various contexts: quantum supremacy, black 
holes…

• Realizable on near-term quantum devices?



Candidate PRS from wormholes

Wormhole: 2 black holes connecting 2 distinct regions of space-time

• Initial (Thermofield Double) state 𝑇𝐹𝐷

• Highly “scrambling” evolution of black holes 𝑈 = 𝑒−𝑖𝐻𝐶𝐹𝑇𝑡

• “Shock” 𝑂𝑖: (key) random Pauli operator applied on the first qubit

Conjecture: 𝑈𝑂ℓ𝑈𝑂ℓ−1⋯𝑂1𝑈 𝑇𝐹𝐷 is PRS [Bouland, Fefferman, Vazirani’20]

BFV20: conjecture is true if 𝑈 is a random black-box unitary

Evidence from black-hole physics?



Binary phase PRS

• Phase oracle for a Boolean function 𝑓: 0, 1 𝑛 → 0, 1
𝑈𝑓 𝑥 = −1 𝑓 𝑥 𝑥

• Binary phase PRS: 𝐺 𝑘 = 𝑈𝑓𝑘𝐻
⊗𝑛 0𝑛

• Proposed in [JLS18]; proven secure if 𝑓𝑘 is PRF [Brakerski, Shmueli’19]

• Kretschmer’21: If classical OWFs do not exist, then binary phase PRS 
is broken for all efficient 𝑓𝑘
• A security proof for any binary PRS implies OWFs

• Inspired by Luby–Rackoff: do this for more than 1 rounds



2-Forrelation state [Kretschmer, Q, Sinha, Tal (forthcoming)]

• 2-Forrelation state: 𝐺 𝑘 = 𝑈𝑓𝑘,1𝐻
⊗𝑛𝑈𝑓𝑘,0𝐻

⊗𝑛 0𝑛

(can extend to 𝑡-Forrelation state by repeating 𝑡 rounds)

• Observation: still secure if 𝑓𝑘 is PRF

• KQST: this is a single-copy secure PRS against BQPPH adversaries if 
𝑓𝑘,𝑏 is instantiated by a random oracle

• Even if P = PH, this construction is still plausibly secure when 
instantiated by some efficient 𝑓𝑘,𝑏 (like SHA-3)



Summary of EFI “candidates”

Source of EFI pairs Concrete? Why is it weaker than OWF?

QMA ≠ QIP [CKR11] No* Seems hard [AIK22]

BQP ≠ QCZK [This work] No* ?

QSCDff [KKNY12] Yes ?

Haar random unitary [K21] No Quantum oracle separation

Random quantum circuits [AA13, AC17] Yes ?

Wormholes [BFV20] It’s a physics problem Physical laws?

2-Forrelation states [KQST, forthcoming] Yes* Random oracle separation

Candidate
PRSs

Complexity
separations

Thank you! Questions?


